پنج‌شنبه, آوریل 3شبکه های اجتماعی

جایگاه هوش مصنوعی در ایران

در ایران هوش مصنوعی در حال توسعه است و در برخی از حوزه‌ها هم مورد استفاده قرار می‌گیرد؛ به‌عنوان‌مثال شرکت‌های ایرانی در حوزه تشخیص چهره توانستند سیستم‌های تشخیص چهره پیشرفته‌ای را تولید کنند که در سیستم‌های حضور و غیاب و امنیت استفاده می‌شود یا در حوزه تشخیص اجسام نیز پروژه‌هایی در دانشگاه‌ها و شرکت‌های فناوری ایران در حال انجام است.

علاوه بر این در حوزه رباتیک هم تحقیقات و پروژه‌هایی در دانشگاه‌ها و صنعت صورت می‌گیرد. برخی از شرکت هوش مصنوعی نیز ربات‌های هوشمندی را تولید کردند که قادر به تشخیص و پاسخ به محیط و وظایف مختلف هستند. در حوزه اقتصاد، هوش مصنوعی به تحلیل داده‌ها و پیش‌بینی رویدادها کمک می‌کند. برخی شرکت‌ها و مؤسسات تحقیقاتی در ایران توانستند الگوریتم‌های یادگیری ماشین را برای تحلیل داده‌های اقتصادی و مالی استفاده کنند. به‌طورکلی هوش مصنوعی در ایران هنوز در مراحل اولیه توسعه است و به سرمایه‌گذاری و تحقیقات بیشتری نیاز دارد.

کاربرد هوش مصنوعی

در زیر برخی از برنامه‌های کاربردی هوش مصنوعی که ممکن است متوجه آن‌ها نباشید را به شما توضیح خواهیم داد.

تشخیص اجسام (Object Recognition)

تشخیص اجسام در تصاویر و ویدئوها به کمک هوش مصنوعی امکان پذیر خواهد بود. مدل‌های هوش مصنوعی با استفاده از الگوریتم‌های یادگیری عمیق قادر به تشخیص اجسام مختلف مانند خودروها، انسان‌ها، حیوانات و اشیاء مختلف هستند. Object Recognition در حوزه‌هایی مانند خودروهای خودران، امنیت و تصویربرداری استفاده می‌شود.

تشخیص چهره (Face Recognition)

با استفاده از الگوریتم‌های یادگیری عمیق، مدل‌های هوش مصنوعی قادر به تشخیص و شناسایی افراد مختلف بر اساس ویژگی‌های چهره خواهند بود. Face Recognition در حوزه‌هایی مانند امنیت، تشخیص هویت و سیستم‌های حضور و غیاب به کار می‌رود.

تشخیص گفتار (Speech Recognition)

هوش مصنوعی AI در تشخیص و تبدیل گفتار به متن عالی است. مدل‌های هوش مصنوعی با استفاده از الگوریتم‌های پردازش سیگنال صوتی و یادگیری عمیق قادر به تشخیص کلمات و جملات از طریق گفتار هستند. این کاربرد در حوزه‌هایی مانند سیستم‌های خودکار ترجمه، سیستم‌های شناسایی صدا و سیستم‌های خودروهای خودران استفاده می‌شود.

دیپ‌فیک و شبکه‌های مولد (Deepfakes and Generative AI)

هوش مصنوعی در ایجاد دیپ‌فیک‌ها (تصاویر و ویدئوهای تقلبی) و استفاده از شبکه‌های مولد (Generative Adversarial Networks) به کار می‌رود. هوش مصنوعی AI با استفاده از الگوریتم‌های یادگیری عمیق قادر به تولید تصاویر و ویدئوهای واقعی خواهد بود. حوزه‌هایی مانند سینما، تبلیغات و امنیت به این سیستم نیاز پیدا خواهند کرد.

رباتیک و هوش مصنوعی

هوش مصنوعی با کمک الگوریتم‌های یادگیری عمیق و پردازش تصویر و گفتار می‌تواند سیستم‌هایی را طراحی کند که قادر به تشخیص و پاسخ به محیط و وظایف مختلف هستند. رباتیک در حوزه‌های گوناگون قابل استفاده است.

هوش مصنوعی در اقتصاد

هوش مصنوعی AI در تحلیل داده‌ها و پیش‌بینی رویدادها هم نقش دارد. با الگوریتم‌های یادگیری ماشین و تحلیل داده‌ها می‌توان ماشین‌هایی را ساخت که الگوها و روندهای اقتصادی را تشخیص می‌دهند و در حوزه‌هایی مانند بورس، بازار سرمایه و تجارت استفاده می‌شوند.

هوش مصنوعی در حوزه کسب و کار

هوش مصنوعی تقریباً در هر جنبه‌ای از یک تجارت کاربرد دارد: تولید، منابع انسانی، بازاریابی، فروش، زنجیره تأمین و تدارکات، خدمات مشتری، کنترل کیفیت، فناوری اطلاعات، امور مالی و موارد دیگر. از ماشین‌آلات و وسایل نقلیه خودکار تا الگوریتم‌هایی که تقلب مشتری را تشخیص می‌دهند از کارکردهای هوش مصنوعی هستند. این قابلیت می‌تواند رفتار سازمان شما را از درون تغییر دهد. ماشین‌های هوش مصنوعی می‌توانند به‌عنوان دستیار شخصی برای کمک به مدیریت ایمیل‌های شما، حفظ تقویم و حتی ارائه توصیه‌هایی برای تسهیل فرآیندها استفاده شوند.

هوش مصنوعی در حوزه آموزش و پرورش

هوش مصنوعی این توانایی را دارد که به مربیان در انجام وظایف غیر آموزشی مانند تسهیل و خودکارسازی پیام‌های شخصی به دانش‌آموزان، کارهای پشتیبانی مانند درجه‌بندی مدارک، تعاملات با والدین، فرایند ثبت نام در دوره‌های مختلف به کار برود.

هوش مصنوعی در حوزه تولید

نظارت بر وضعیت ماشین‌های تولید، تعمیر و نگهداری دستگاه‌ها، تجزیه و تحلیل شرایط، بررسی کارایی هر بخش به‌صورت مجزا از قابلیت‌های هوش مصنوعی AI در حوزه تولید است.

هوش مصنوعی در برقراری امنیت

سیستم‌های هوش مصنوعی در زمینه شناسایی و مبارزه با حملات سایبری و سایر تهدیدات سایبری بر اساس ورودی مداوم داده‌ها، شناسایی الگوها و عقب‌نشینی حملات قابل استفاده خواهد بود.

هوش مصنوعی و تفسیر داده‌ها

بسیاری از مردم بر این باورند که هوش مصنوعی، حال و آینده بخش فناوری است. بسیاری از رهبران صنعت از هوش مصنوعی برای اهداف مختلفی از جمله ارائه خدمات ارزشمند و آماده سازی شرکت‌های خود برای آینده استفاده می‌کنند. امنیت داده‌ها که یکی از مهم‌ترین دارایی‌های هر شرکت فناوری محور است، یکی از رایج‌ترین و حیاتی‌ترین کاربردهای هوش مصنوعی است. از آنجایی که دنیا هوشمندتر و مرتبط‌تر از همیشه است پس عملکرد هوش مصنوعی در تجارت بسیار اهمیت دارد.

هوش مصنوعی در ورزش

نحوه استفاده از هوش مصنوعی در ورزش معمولاً مربوط به سازماندهی تاکتیک‌ها، مربیگری ورزشکاران، بازاریابی و موارد دیگر است؛ به‌عبارت‌دیگر هوش مصنوعی تأثیر بسزایی در نحوه مشاهده و مصرف مطالب ورزشی دارد.

هوش مصنوعی در شبکه‌های اجتماعی

  • هوش مصنوعی AI در اینستاگرام، لایک‌های شما و حساب‌هایی را که دنبال می‌کنید در نظر می‌گیرد تا مشخص کند چه پست‌هایی در برگه کاوش به شما نشان داده شوند. 
  • فیسبوک با این ابزار می‌تواند مکالمات را بهتر درک کند یا ترجمه خودکار پست‌ها را از زبان‌های مختلف بهتر انجام دهد. 
  • هوش مصنوعی توسط توییتر برای کشف تقلب، حذف تبلیغات و محتواهای نفرت‌انگیز استفاده می‌شود. توییتر از هوش مصنوعی برای توصیه توییت‌هایی استفاده می‌کند که کاربران ممکن است از آن‌ها لذت ببرند.

هوش مصنوعی در خدمات حقوقی

هوش مصنوعی در تحلیل قوانین و پیشنهاد دادن راهکارهای حقوقی کمک کننده است. این تکنولوژی تحلیل متون حقوقی و ارائه پاسخ‌های حقوقی را راحت‌تر می‌کند.

کاربرد هوش مصنوعی در مسیریابی و سفر

سیستم‌های حمل و نقل هوشمند این پتانسیل را دارند که به یکی از مؤثرترین روش‌ها برای بهبود کیفیت زندگی مردم در سراسر جهان تبدیل شوند. در حال حاضر نمونه‌های متعددی از سیستم‌های مشابه در بخش‌های مختلف مانند حمل و نقل کالاهای سنگین یا مدیریت ترافیک استفاده می‌شوند.

کاربرد هوش مصنوعی در تجارت الکترونیک

هوش مصنوعی AI در این بخش به ۳ دسته زیر تقسیم می‌شود:

  • خرید شخصی: فناوری هوش مصنوعی برای ایجاد موتورهای توصیه‌ای استفاده می‌شود که از طریق آن‌ها می‌توانید با مشتریان خود تعامل بهتری داشته باشید. این توصیه‌ها مطابق با تاریخچه مرور، ترجیحات و علایق آن‌ها ارائه شدند. این به بهبود رابطه شما با مشتریان و وفاداری آن‌ها نسبت به برند شما کمک می‌کند.
  • دستیاران مجهز به هوش مصنوعی: دستیارهای خرید مجازی و چت‌بات‌ها به بهبود تجربه کاربر در هنگام خرید آنلاین کمک می‌کنند. پردازش زبان طبیعی برای اینکه مکالمه تا حد امکان انسانی و شخصی به نظر برسد استفاده می‌شود.
  • جلوگیری از کلاه برداری: تقلب‌های کارت اعتباری و بررسی‌های جعلی دو مورد از مهم‌ترین مسائلی است که شرکت‌های تجارت الکترونیک با آن سروکار دارند. هوش مصنوعی با در نظر گرفتن الگوهای استفاده به کاهش احتمال کلاهبرداری کارت‌های اعتباری کمک کند. بسیاری از مشتریان ترجیح می‌دهند محصول یا خدمتی را بر اساس نظرات مشتریان انتخاب کنند. هوش مصنوعی در این بخش به شناسایی و رسیدگی به بررسی‌های جعلی کمک می‌کند.

کاربرد هوش مصنوعی در بازاریابی

بازاریابان با استفاده از هوش مصنوعی تبلیغات بسیار هدفمند و شخصی شده تری را با کمک تجزیه و تحلیل رفتاری، و تشخیص الگو در ML و … ارائه می‌دهند؛ همچنین به هدف‌گیری مجدد مخاطبان در زمان مناسب برای اطمینان از نتایج بهتر و کاهش احساس بی‌اعتمادی کمک می‌کنند. هوش مصنوعی بازاریابی محتوا را با سبک و صدای برند مطابقت می‌دهد؛ حتی می‌توان از آن برای انجام کارهای معمولی مانند عملکرد، گزارش‌های کمپین و موارد دیگر استفاده کرد. هوش مصنوعی قادر است شخصی‌سازی‌های بی‌درنگی را بر اساس رفتار کاربران ارائه دهد و به بهینه‌سازی کمپین‌های بازاریابی کمک کند.

کاربرد هوش مصنوعی در مدیریت منابع انسانی

سیستم‌های هوش مصنوعی این توانایی را دارند تا با اسکن Index یا نمایه نامزدهای شغلی و رزومه کاری آن‌ها به استخدام‌کنندگان درک درستی از مجموعه استعدادهایی که باید از بین آن‌ها انتخاب کنند ارائه دهند.

کاربرد هوش مصنوعی در اکتشافات فضایی

نجوم یک موضوع نسبتاً ناشناخته است که جذابیت و هیجان زیادی دارد. وقتی صحبت از نجوم می‌شود یکی از دشوارترین موضوعات «تجزیه و تحلیل داده‌ها» است؛ به همین علت ستاره شناسان برای ایجاد ابزارهای جدید به یادگیری ماشین و هوش مصنوعی روی آورند. اخیراً گروهی از دانشمندان از هوش مصنوعی در تحقیقات ادغام کهکشان‌ها استفاده کردند تا ثابت کنند ادغام کهکشان‌ها نیروی اصلی زیربنای ستارگان است. محققان با توجه به اندازه این مجموعه یک سیستم یادگیری عمیق ایجاد کردند که خود را برای مکان یابی کهکشان‌های ادغام شده آموزش می‌داد. به گفته یکی از ستاره شناسان مزیت هوش مصنوعی این است که تکرارپذیری مطالعه را بهبود می‌بخشد.

کاربرد هوش مصنوعی در بازی‌های کامپیوتری

بخش دیگری که کاربردهای هوش مصنوعی در آن برجسته شده «بخش بازی» است. هوش مصنوعی در ایجاد NPC های هوشمند و شبیه انسان برای تعامل با بازیکنان نقشش را به خوبی ایفا می‌کند.

کاربرد هوش مصنوعی در کشاورزی

هوش مصنوعی برای شناسایی عیوب و کمبود مواد مغذی در خاک استفاده می‌شود. این کار با استفاده از برنامه‌های بینایی کامپیوتر، روباتیک و یادگیری ماشین انجام می‌شود. هوش مصنوعی AI قادر است تا محل رشد علف‌های هرز را تجزیه و تحلیل کند. ربات‌های هوش مصنوعی می‌توانند به برداشت محصولات با حجم بالاتر و سرعت بیشتر هم کمک کنند.

کاربردهای هوش مصنوعی در آموزش

اگرچه بخش آموزش بیشترین تأثیرپذیری را از انسان دارد اما هوش مصنوعی به آرامی شروع به ریشه‌یابی در بخش آموزش کرده است؛ حتی در این بخش به افزایش بهره‌وری در میان دانشکده‌ها کمک می‌کند یعنی آن‌ها را ترغیب می‌کند تا به جای اینکه تمرکز خود را روی کارهای اداری بگذارند توجهشان را به دانشجویان بدهند.

کاربردهای هوش مصنوعی در بانکداری و بازارهای مالی

گزارش شده ۸۰ درصد بانک‌ها مزایایی را که هوش مصنوعی ارائه می‌دهد تشخیص داده است. فناوری بسیار پیشرفته‌ای که از طریق هوش مصنوعی ارائه شده می‌تواند به بهبود چشمگیر طیف گسترده‌ای از خدمات مالی کمک کند. هوش مصنوعی این قابلیت را دارد تا تغییر در الگوی تراکنش‌ها را که نشانه کلاهبرداری است را تشخیص دهد؛ همچنین می‌تواند خطرات وام را بهتر پیش بینی و ارزیابی کند.

کاربردهای هوش مصنوعی در پزشکی

همان‌طور که اشاره کردیم، پیشرفت هوش مصنوعی را می‌توان در علم پزشکی مشاهده کرد. شرکت‌های نوآور و مؤسسات پزشکی تکنولوژی محور، در حال ایجاد، آزمایش و اجرای الگوریتم‌های هوشمند در شاخه‌های گوناگون مراقبت‌های پزشکی هستند. کاربرد این الگوریتم‌ها، از پیشگیری و غربالگری گرفته تا تشخیص، درمان و کنترل بیماری‌ها، گسترده است. در همین زمان، قانون‌گذاران نیز توجه ویژه‌ای به این موضوع داشته‌اند.

در فوریه ۲۰۱۹، سازمان غذا و داروی ایالات متحده آمریکا (FDA) مقاله‌ای در مورد صدور مجوز برای به کارگیری هوش مصنوعی در پزشکی منتشر کرد. این موضوع، به کاربردهای ساده این تکنولوژی مربوط نمی‌شود. چنین کاربردهایی پیش از این نیز وجود داشته‌اند و دارای تأییدیه نظارتی هستند. ابتکار جدید FDA مربوط به سیستم‌های پیشرفته هوش مصنوعی در زمان واقعی هستند که دائماً الگوریتم‌هایشان را تغییر می‌دهند و نسبت به راه‌حل‌های نرم‌افزاری سنتی، به قانون‌گذاری متفاوتی نیاز دارند.

حوزه رادیولوژی

آموزش شبکه‌های عصبی در رادیولوژی، که معمولاً شامل ده‌ها هزار مجموعه داده می‌شود، بسیار خبرساز شده است. جایی که در حال حاضر و در برخی موارد خاص، الگوریتم‌ها عملکرد بهتری نسبت به رادیولوژیست‌ها دارند. تا جایی که پروفسور استفان شنبرگ، رئیس گروه رادیولوژی بالینی و پزشکی هسته‌ای در مرکز پزشکی دانشگاه مانهایم آلمان، از یک «انقلاب ریاضی در رادیولوژی» صحبت می‌کند.

نگرانی در مورد این که الگوریتم‌ها، جای رادیولوژیست‌ها را بگیرند، بعضاً توسط رسانه‌ها مطرح می‌شود؛ اما متخصصان، چنین دغدغه‌ای ندارند. بیشتر رادیولوژیست‌ها، هوش مصنوعی را تهدید تلقی نمی‌کنند؛ بلکه معتقدند که این تکنولوژی می‌تواند برای حوزه رادیولوژی مفید باشد. الگوریتم‌ها می‌توانند فعالیت‌های تکراری و وقت گیر را کنترل کنند و در نتیجه، باعث کاهش حجم کار روزمره رادیولوژیست‌ها شوند.

چالش‌های هوش مصنوعی

اگر چه از سال ۲۰۲۳ حوزه هوش مصنوعی AI شاهد پیشرفت‌های قابل توجهی بوده و توجهات گسترده‌ای را به سمت خود جلب کرده و اما در میان این پیشرفت‌ها باید اذعان کنیم که سفر به سمت هوش مصنوعی بدون چالش نیست. این چالش‌ها در هوش مصنوعی پیچیدگی‌های بی‌شماری را در بر می‌گیرد که نیازمند بررسی دقیق و استراتژیک است. در این بخش قرار است شما را با چالش‌ها و پیچیدگی‌هایی که مانع پذیرش هوش مصنوعی می‌شود آشنا کنیم.

  • عدم درک

هوش مصنوعی هنوز یک فناوری نسبتاً جدید است و چیزهای زیادی در مورد عملکرد آن وجود دارد که درک نشده است. این عدم درک مانع توسعه سیستم‌های هوش مصنوعی AI می‌شود. برای مقابله با این چالش‌ها شرکت‌ها در تلاش برای درک الگوریتم‌ها، مدل‌ها و تکنیک‌های هوش مصنوعی هستند.

  • نگرانی‌های مربوط به حریم خصوصی

سیستم‌های هوش مصنوعی برای آموزش و عملکرد بهتر به حجم وسیعی از داده‌ها احتیاج دارند. این داده‌ها شامل اطلاعات شخصی و حساس می‌شوند و نگرانی‌هایی را در مورد حفظ حریم خصوصی و حفاظت از داده‌ها به وجود می‌آورند. شرکت هوش مصنوعی برای کاهش این نگرانی‌ها باید اقدامات محرمانه و قوی مانند ناشناس سازی داده‌ها یا ذخیره‌سازی امن داده‌ها را در اولویت قرار دهند. سیاست‌های شفاف استفاده از داده‌ها و کسب رضایت آگاهانه از افراد نیز اعتماد را افزایش و نگرانی‌های مربوط به حریم خصوصی را کاهش می‌دهد.

  • قدرت پردازش

این سیستم‌ها از نظر محاسباتی سخت هستند و برای انجام کارهای پیچیده به قدرت پردازشی قابل توجهی نیاز دارند. این امر منجر به هزینه‌های زیرساختی بالا می‌شود. برای غلبه بر این چالش‌ها شرکت‌ها باید از پیشرفت‌های فناوری سخت‌افزاری مانند تراشه‌های تخصصی هوش مصنوعی و سیستم‌های محاسباتی توزیع‌شده استفاده کنند.

  • کمبود داده

سیستم‌های هوش مصنوعی AI برای آموزش و دستیابی به عملکرد مطلوب وابسته به داده‌های بزرگ و متنوع هستند. بااین‌حال همه صنایع به حجم یا کیفیت داده مورد نیاز دسترسی ندارند. شرکت‌ها قادرند با تقویت همکاری‌ها و مشارکت‌ها برای دسترسی به مجموعه داده‌های مرتبط به این چالش‌ها در هوش مصنوعی رسیدگی کنند یا با تکنیک‌هایی مانند یادگیری انتقال، افزایش داده‌ها و تولید داده‌های مصنوعی مشکل دسترسی محدود داده‌ها را کاهش دهند.

  • نتایج غیرقابل اعتماد

سیستم‌های هوش مصنوعی به دلایل مختلف مانند مجموعه داده‌های مغرضانه یا ناقص، محدودیت‌های الگوریتمی، یا پیچیدگی کار نتایج غیرقابل اعتمادی دارند. برای مقابله با این چالش‌ها شرکت‌ها باید بر فرآیندهای آزمایش و اعتبارسنجی دقیق در طول توسعه سیستم‌های هوش مصنوعی تأکید کنند. نظارت و اصلاح مستمر در رفع این چالش تأثیرگذار خواهد بود.

  • عدم اعتماد

برخی از افراد ممکن است در اعتماد به سیستم‌های هوش مصنوعی تردید یا بی‌میلی نشان دهند که اغلب ناشی از عدم درک نحوه عملکرد هوش مصنوعی است. ایجاد اعتماد به شفافیت و توضیح پذیری در الگوریتم‌های هوش مصنوعی و فرآیندهای تصمیم گیری بستگی دارد. شرکت‌ها با ارائه توضیحات واضح و قابل دسترس در مورد نحوه رسیدن هوش مصنوعی AI به نتیجه اعتماد را افزایش خواهند داد. علاوه بر این رعایت استانداردها و مقررات مربوطه، اعتماد کاربران و ذینفعان را تقویت می‌کند.

  • اهداف نامشخص

گاهی اوقات شرکت‌ها در تعیین اهداف برای پیاده سازی هوش مصنوعی در سازمان خود به چالش می‌خورند. توسعه سیستم‌های هوش مصنوعی کارآمد بدون هدف گذاری دشوار است. برای غلبه بر این چالش‌ها شرکت‌ها باید ارزیابی‌های جامعی از فرآیندهای کسب‌وکار خود انجام دهند و با شناسایی حوزه‌های خاصی که هوش مصنوعی ارزش را به وجود می‌آورد به این مشکل خاتمه دهند.

  • مشکلات فنی

پیاده سازی هوش مصنوعی AI شامل غلبه بر چالش‌های فنی مانند ذخیره سازی داده‌ها، امنیت و مقیاس پذیری می‌شود. شرکت‌ها باید در زیرساخت‌های قوی سرمایه گذاری کنند تا قادر به مدیریت داده‌های مرتبط با هوش مصنوعی باشند. اطمینان از امنیت و حریم خصوصی داده‌ها در طول چرخه عمر هوش مصنوعی برای ایجاد اعتماد کاربران بسیار مهم است. از همان ابتدا باید مقیاس پذیری در نظر گرفته شود تا تقاضاهای سیستم‌های هوش مصنوعی برآورده شود.

  • تعصب در الگوریتم‌ها

گاهی اوقات الگوریتم‌های هوش مصنوعی سوگیری‌های موجود در داده‌های مورد استفاده را به ارث می‌برند و نتایج ناعادلانه یا تبعیض‌آمیزی را ارائه می‌دهند. این چالش بسیار حیاتی است؛ زیرا سیستم‌های هوش مصنوعی نقش مهمی را در فرآیندهای تصمیم‌گیری در حوزه‌های مختلف بازی می‌کنند. برای رسیدگی به این سوگیری‌ها شرکت‌ها به اجرای استراتژی‌هایی نیاز دارند که انصاف و جامعیت را ترویج می‌دهد.

  • استراتژی پیاده سازی

هیچ رویکرد یکسانی برای پیاده سازی هوش مصنوعی وجود ندارد. هر شرکت الزامات منحصربه‌فردی دارد و یک استراتژی اجرایی مؤثر باید متناسب با نیازهای خاص آن باشد. انجام ارزیابی‌های کامل از زیرساخت‌های موجود، در دسترس بودن داده‌ها و آمادگی سازمانی یک امر ضروری است. شرکت‌ها باید نقشه راه واضحی را تدوین کنند که مراحل، منابع و جدول زمانی لازم برای ادغام موفقیت آمیز هوش مصنوعی را مشخص کند.

آیا هوش مصنوعی، جای متخصصان را خواهد گرفت؟

در کارهای آزمایشگاهی، نوعی علاقه نسبت به الگوریتم‌هایی وجود دارد که از فرایندهای عملیاتی پشتیبانی می‌کنند. به‌عنوان‌مثال، در نظارت بین آزمایشگاهی بر سیستم‌های تشخیصی، این تکنولوژی می‌تواند مشکلات را پیش از وقوع خرابی یا شکست شناسایی کند. این امر، امکان به کارگیری برنامه‌های تعمیر و نگهداری فعال را فراهم می‌کند. از نظر بالینی، الگوریتم‌ها برای تصمیم‌گیری تشخیصی در پزشکی آزمایشگاهی مناسب هستند. علاوه بر این، همانند پاتولوژی (آسیب‌شناسی)، برای تجزیه و تحلیل پیش‌بینانه بر اساس الگوهای پیچیده نشانگر زیستی نیز مناسب‌اند.

ممکن است در آینده نقش رادیولوژیست، پاتولوژیست و پزشک آزمایشگاه از یکدیگر جدا شود. شاید متخصصان به «یکپارچه کننده اطلاعات تشخیصی» تبدیل شوند و با همکاری نزدیک‌تر در بخش‌های تشخیصی یکپارچه، همه قطعات پازل تشخیصی را در اسرع وقت در کنار یکدیگر قرار دهند.

در ادامه کاربردهای هوش مصنوعی در حوزه سلامت، می‌توان به استفاده از این تکنولوژی در تشخیص ویروس کرونا بر اساس صدای سرفه افراد اشاره کرد. کارشناسان انستیتوی تکنولوژی ماساچوست اعلام کردند که نوعی مدل هوش مصنوعی طراحی کرده‌اند که می‌تواند موارد بدون علائم ابتلا به ویروس کرونا را از طریق صدای سرفه تشخیص دهد.

افرادی که علائمی از خود نشان نمی‌دهند، کمتر تحت آزمایش قرار می‌گیرند. بنابراین ممکن است بدون این که اطلاع داشته باشند، بیماری را به دیگران منتقل کنند. این مدل، به پیشگیری از بروز این عارضه کمک می‌کند. متخصصان، با بررسی ده‌ها هزار نمونه از صدای سرفه و صداهایی که توسط افراد داوطلب ارسال شده، دریافتند که مدل سرفه در افراد بدون علامت با افراد سالم متفاوت است. این تفاوت، توسط گوش انسان قابل تشخیص نیست؛ اما هوش مصنوعی می‌تواند آن را تشخیص دهد. این مدل توانسته است بیماری کووید ۱۹ را با دقت ۹۸.۵ درصد در افراد مبتلا تشخیص دهد.

شما چقدر با کاربردهای هوش مصنوعی در حوزه‌های گوناگون آشنا هستید؟ چه کاربردهای دیگری از هوش مصنوعی در حوزه سلامت می‌شناسید؟ به نظر شما استفاده از هوش مصنوعی در حوزه سلامت، چه تاثیری بر پیشگیری، کنترل و درمان بیماری‌ها دارد؟ نظرات و تجربیات‌تان را با ما و دیگران به اشتراک بگذارید.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *