پنج‌شنبه, آوریل 3شبکه های اجتماعی

فلسفه هوش مصنوعی و چگونگی استفاده آن

فلسفه هوش مصنوعی به مطالعه و بررسی طبیعت و ماهیت هوش مصنوعی می‌پردازد. این فلسفه در تلاش است تا به سؤالاتی درباره هوش مصنوعی مانند آیا هوش مصنوعی به اندازه هوش انسان قدرتمند و آگاهانه است؟ آیا هوش مصنوعی قادر به اخلاقیات است؟ آیا هوش مصنوعی تأثیرات قابل توجهی بر جامعه و انسان‌ها دارد؟ پاسخ دهد. فلسفه هوش مصنوعی به بررسی تفاوت‌های میان هوش مصنوعی و هوش طبیعی و سایر مسائل مرتبط با هوش مصنوعی می‌پردازد.

چگونگی استفاده هوش مصنوعی

هوش مصنوعی AI با روش‌های مختلفی به حل مسائل پیچیده و ساده‌سازی کارهایی که قبلاً پرزحمت بودند کمک می‌کند. چگونگی استفاده از آن به شرح زیر است:

  • تعیین مسئله

ابتدا باید مسئله خاصی که باید حل شود یا شغلی که باید خودکار شود را تعیین کنید.

  • جمع آوری داده‌ها

اطلاعات مورد نیاز برای آموزش سیستم اطلاعاتی مد نظر را به دست آورید. این اطلاعات باید مناسب، دقیق و کامل باشند.

  • انتخاب یک الگوریتم مناسب

برنامه هوش مصنوعی را انتخاب کنید که به بهترین وجه با موضوع مورد نظر مطابقت دارد. روش‌های مختلفی مانند درخت‌های تصمیم و شبکه‌های عصبی در دسترس هستند.

  • آموزش سیستم هوش مصنوعی

سیستم هوش مصنوعی را با استفاده از داده‌های جمع آوری شده آموزش دهید. این امر مستلزم ارسال داده به برنامه و تنظیم آن برای افزایش دقت است. بعد از آموزش باید سیستم هوش مصنوعی را ارزیابی کنید تا دقت و قابلیت اطمینان آن را بسنجید.

  • استقرار سیستم

پس از آزمایش و اثبات صحت باید آن را در مرحله تولید قرار دهید. این کار شاید مستلزم ادغام آن با سیستم‌های فعلی یا توسعه سیستم‌های جدید باشد.

  • مدیریت مداوم سیستم هوش مصنوعی

برای اطمینان از عملکرد درست و پیش بینی‌های دقیق سیستم باید نظارت مستمر داشته باشید و آن را دائماً به‌روزرسانی کنید.

شاخه‌های هوش مصنوعی

در اینجا شاخه‌های اصلی هوش مصنوعی را برای شما آوردیم.

  • رباتیک

ربات‌ها ماشین‌های برنامه ریزی شده‌ای هستند که به‌طور خودکار مجموعه‌ای از اقدامات پیچیده را انجام می‌دهند. افراد، ربات‌ها را با دستگاه‌های خارجی یا سیستم‌های کنترلی که درونشان تعبیه شده کنترل می‌کنند. ربات‌ها در انجام کارهای خسته کننده و تکراری کمک کننده هستند به ویژه ربات‌های مجهز به هوش مصنوعی که به شرکت‌هایی مانند ناسا در اکتشاف فضا کمک می‌کنند.

ربات‌های انسان نما جدیدترین پیشرفت‌ها و نمونه‌های شناخته شده هستند؛ به‌عنوان‌مثال سوفیا رباتی است که توسط “Hanson Robotics” ساخته شده و با ترکیب هوش مصنوعی و شبکه‌های عصبی کار می‌کند. او چهره انسان‌ها را می‌شناسد و احساسات و ژست‌ها را درک می‌کند حتی می‌تواند با مردم تعامل داشته باشد.

  • تشخیص الگو

در این شاخه از هوش مصنوعی، الگوریتم‌ها و مدل‌هایی طراحی می‌شوند که قادر به تشخیص الگوهای خاص در داده‌ها هستند. این الگوریتم‌ها برای تشخیص الگوهای صوتی، تصویری، متنی و … استفاده می‌شوند؛ به‌عنوان‌مثال الگوریتم‌های تشخیص الگو در شناسایی چهره ویژگی‌های خاصی از صورت را شناسایی می‌کنند و افراد مختلف را تشخیص می‌دهند.

  • شبکه‌های عصبی مصنوعی

شبکه‌های عصبی به‌عنوان شبکه‌های عصبی مصنوعی (ANN) یا شبکه‌های عصبی شبیه سازی شده (SNN) هم شناخته می‌شوند. شبکه‌های عصبی از مغز انسان الهام می‌گیرند و نحوه ارسال سیگنال‌های نورون‌های بیولوژیکی به یکدیگر را کپی می‌کنند. شبکه‌های عصبی مصنوعی دارای لایه‌های گره‌ای هستند که از یک لایه ورودی، یک یا چند لایه پنهان و یک لایه خروجی تشکیل شدند. هر گره یک نورون مصنوعی نامیده می‌شود و به نورون‌های دیگر متصل می‌شود. هنگامی که خروجی یک گره فردی بیش از یک مقدار آستانه مشخص است، گره برای ارسال داده به لایه شبکه بعدی فعال می‌شود. شبکه‌های عصبی برای یادگیری و بهبود دقت به داده‌های آموزشی نیاز دارند.

  • یادگیری عمیق

یادگیری عمیق زیرمجموعه‌ای از ML یا همان یادگیری ماشین است که شبکه‌های عصبی مصنوعی مغز انسان را با مهارت کامل تقلید می‌کند. در این صورت هوش مصنوعی وظایف استدلالی پیچیده را بدون دخالت انسان انجام می‌دهد.

  • تشخیص گفتار

در این شاخه سعی می‌شود تا برای تشخیص و تفسیر گفتار انسان الگوریتم‌ها و مدل‌هایی طراحی شوند. این الگوریتم‌ها به شناسایی کلمات و جملات مورد استفاده در یک گفتار کمک می‌کنند و در برخی موارد به ترجمه گفتار از یک زبان به زبان دیگر می‌پردازند.

  • پردازش زبان طبیعی

پردازش زبان طبیعی به رایانه‌ها اجازه می‌دهد تا هم متن و هم کلمات گفتاری را مانند انسان درک کنند. زبان‌شناسی و مدل‌های یادگیری عمیق، با ترکیب یادگیری ماشینی، زبان انسان را در داده‌های صوتی یا متنی پردازش می‌کنند تا معنی، هدف و احساسات رو کاملاً درک کنند؛ به‌عنوان‌مثال در تشخیص گفتار به متن، داده‌های صوتی به‌طور قابل اعتمادی به داده‌های متنی تبدیل می‌شوند. این کار خیلی چالش برانگیز است زیرا مردم با لحن، تأکید و لهجه‌های مختلف صحبت می‌کنند. برنامه نویسان باید برنامه‌های کاربردی مبتنی بر زبان طبیعی را به رایانه‌ها آموزش دهند تا بتوانند داده‌ها را از ابتدا درک کرده و تشخیص دهند. برخی از کاربردهای پردازش زبان طبیعی عبارت‌اند از:

  • چت‌بات‌های مجازی که قادرند اطلاعات متنی را تشخیص دهند تا در طول زمان به مشتریان پاسخ‌های بهتری ارائه دهند.
  • تشخیص هرزنامه‌ها که با پردازش زبان ایمیل‌ها آن‌ها را به بخش هرزنامه می‌فرستد.
  • تحلیل احساسات و تجزیه و تحلیل زبان مورد استفاده در سیستم عامل‌های رسانه‌های اجتماعی که به استخراج احساسات و نگرش‌ها در مورد محصولات مختلف کمک می‌کند.
  • بینایی ماشین

یکی از محبوب‌ترین شاخه‌های هوش مصنوعی در حال حاضر «بینایی کامپیوتر» است. بینایی کامپیوتری به دنبال توسعه تکنیک‌هایی است که به رایانه‌ها در دیدن و درک تصاویر و فیلم‌های دیجیتال کمک می‌کند. استفاده از مدل‌های یادگیری ماشینی روی تصاویر به رایانه‌ها امکان می‌دهد اشیا، چهره‌ها، افراد، حیوانات و … را شناسایی کنند.

مدل‌های الگوریتمی به رایانه‌ها کمک می‌کنند تا در مورد زمینه‌های داده‌های بصری آموزش ببینند و با داده‌های کافی که از طریق یک مدل تغذیه می‌شوند یک تصویر را از تصویر دیگر تشخیص دهند. یک شبکه عصبی کانولوشنال در کنار یک مدل کار می‌کند تا تصاویر را به پیکسل‌ها تجزیه کند و به آن‌ها برچسب بدهد؛ سپس شبکه عصبی از برچسب‌ها برای انجام کانولوشن که یک عملیات ریاضی روی دو تابع برای تولید تابع سوم است استفاده می‌کنند و پیش‌بینی‌هایی درباره آنچه می‌بیند انجام می‌دهند. بینایی کامپیوتر در صنایع مختلف کاربرد دارد.

  • شبکه عصبی پیچشی

این شاخه از هوش مصنوعی برای پردازش تصاویر و سیگنال‌های دوبعدی استفاده می‌شود. شبکه عصبی پیچشی قادر است الگوهای خاصی را در تصاویر مانند تشخیص چهره، تشخیص اشیاء، تشخیص اعداد و حروف و … شناسایی کند. این شبکه‌ها معمولاً در برنامه‌های تشخیص تصویر و تشخیص الگو به کار می‌روند.

  • شبکه عصبی بازگشتی

در این شاخه، شبکه‌های عصبی طراحی می‌شوند که قادر به پردازش داده‌های دنباله‌ای هستند. این شبکه‌ها می‌توانند الگوهای زمانی و ترتیبی را در داده‌ها شناسایی کنند. برخی از کاربردهای شبکه عصبی بازگشتی شامل ترجمه ماشینی، تولید متن، تشخیص گفتار و پردازش زبان طبیعی می‌شود.

  • هوش مصنوعی و یادگیری ماشین

منظور از یادگیری ماشینی، توانایی ماشین‌ها برای یادگیری خودکار از داده‌ها و الگوریتم‌ها است. این بخش به‌عنوان یکی از شاخه‌های سخت هوش مصنوعی شناخته می‌شود. یادگیری ماشینی عملکردها را با استفاده از تجربیات گذشته بهبود می‌بخشد و می‌تواند بدون برنامه‌ریزی‌های خاص تصمیم‌گیری کند. این فرآیند با جمع‌آوری داده‌های تاریخی مانند دستورالعمل‌ها آغاز می‌شود تا بتواند مدل‌های منطقی را برای استنتاج آینده بسازد. الگوریتم‌های یادگیری ماشینی به شکل زیر طبقه بندی می‌شوند:

  • یادگیری تحت نظارت: ماشین‌ها با داده‌های برچسب‌گذاری شده برای پیش‌بینی نتیجه آموزش داده می‌شوند.
  • یادگیری بدون نظارت: ماشین‌ها با داده‌های بدون برچسب آموزش داده می‌شوند و مدل اطلاعات را از ورودی استخراج می‌کنند تا با شناسایی ویژگی‌ها و الگوها یک نتیجه را ایجاد کنند.
  • یادگیری تقویتی: ماشین‌ها از طریق آزمون و خطا یاد می‌گیرند و برای شکل دادن به اقدامات از «بازخورد» استفاده می‌کنند.
  • یادگیری تقویتی

در این شاخه از هوش مصنوعی، الگوریتم‌ها و مدل‌هایی طراحی می‌شوند که قادر به یادگیری از طریق «تجربه و تعامل با محیط» هستند. این الگوریتم‌ها با استفاده از سیگنال‌های تقویت، عملکرد خود را در انجام یک وظیفه خاص بر اساس تجربه در محیط بهبود می‌بخشند. یادگیری تقویتی برای کاربردهایی مانند بازی‌های رایانه‌ای، کنترل ربات‌ها و مدیریت منابع استفاده می‌شود.

  • منطق فازی

منطق فازی تکنیکی است که به حل مسائل یا عباراتی که می‌توانند درست یا نادرست باشند کمک می‌کند. این روش با در نظر گرفتن تمام احتمالات موجود بین مقادیر دیجیتالی «بله» و «نه» تصمیمات انسانی را کپی می‌کند. به بیان ساده‌تر میزان درستی یک فرضیه را می‌سنجد. شما می‌توانید از این شاخه از هوش مصنوعی برای استدلال در مورد موضوعات نامشخص استفاده کنید. منطق فازی یک روش راحت و انعطاف‌پذیر برای پیاده‌سازی تکنیک‌های یادگیری ماشینی و کپی کردن منطقی فکر انسان است. معماری منطق فازی از چهار بخش تشکیل شده است.

سطوح مختلف هوش مصنوعی

فناوری‌های هوش مصنوعی بر اساس موارد زیر دسته بندی می‌شوند:

  • ظرفیت تقلید ویژگی‌های انسان
  • فناوری‌هایی که برای انجام این کار استفاده می‌شوند.
  • کاربردهای دنیای واقعی و تئوری ذهن

بر اساس این ویژگی‌ها، تمام سیستم‌های هوش مصنوعی اعم از واقعی و فرضی به یکی از سه نوع زیر تقسیم می‌شوند:

  • هوش مصنوعی باریک یا  ANI
  • هوش مصنوعی عمومی یا  AGI
  • ابر هوش مصنوعی یا ASI
  • ANI

هوش مصنوعی ANI که به آن هوش مصنوعی ضعیف یا هوش مصنوعی باریک نیز گفته می‌شود تنها نوع هوش مصنوعی است که تا به امروز با موفقیت به آن دست یافتیم. ANI هدف گرا است و برای انجام وظایف منحصر به فرد مانند تشخیص چهره، تشخیص گفتار/ دستیاران صدا، رانندگی با ماشین یا جستجو در اینترنت طراحی شده و در تکمیل کار خاصی که برای انجام آن برنامه ریزی شده بسیار هوشمند است.

اگرچه این ماشین‌ها ممکن است هوشمند به نظر برسند اما تحت نظر مجموعه کوچکی از محدودیت‌ها کار می‌کنند؛ به همین دلیل است که این نوع معمولاً به‌عنوان هوش مصنوعی ضعیف شناخته می‌شوند. ANI هوش انسانی را تقلید یا تکرار نمی‌کند بلکه صرفاً رفتار انسان را بر اساس طیف محدودی از پارامترها و زمینه‌ها شبیه سازی می‌کند. تشخیص گفتار و زبان دستیار مجازی Siri در آیفون‌ها یا تشخیص دید اتومبیل‌های خودران را در نظر بگیرید که بر اساس سابقه خریدتان محصولاتی را به شما پیشنهاد می‌دهند. این سیستم‌ها فقط تکمیل وظایف خاصی را یاد می‌گیرند.

هوش مصنوعی ANI در دهه گذشته پیشرفت‌های متعددی را تجربه کرد و توسط دستاوردهای یادگیری ماشین و یادگیری عمیق تقویت شد؛ به‌عنوان‌مثال امروزه از سیستم‌های هوش مصنوعی در پزشکی برای تشخیص سرطان و سایر بیماری‌ها از طریق تکرار شناخت و استدلال انسانی استفاده می‌شود. ANI از پردازش زبان طبیعی یا NLP برای انجام وظایف گوناگون کمک می‌گیرد. NLP در چت‌بات‌ها و فناوری‌های مشابه هوش مصنوعی مشهود است و با درک گفتار و متن به زبان طبیعی با انسان‌ها به شیوه‌ای طبیعی و شخصی شده تعامل می‌کند. نمونه‌هایی از هوش مصنوعی باریک به شرح زیر هستند:

  • الگوریتم RankBrain گوگل
  • Siri توسط اپل
  • Alexa توسط آمازون
  • Cortana توسط مایکروسافت
  • نرم افزارهای تشخیص چهره
  • ابزارهای نقشه برداری
  • ابزارهای مخصوص پیش بینی بیماری
  • تولید و ربات‌های مخصوص پهپاد
  • فیلترهای هرزنامه ایمیل
  • ابزارهای نظارت بر رسانه‌های اجتماعی
  • توصیه محتواهای مختلف به کاربر بر اساس رفتار او
  • AGI

هوش مصنوعی قوی یا عمیق یک مفهوم ماشینی با هوش عمومی است که هوش یا رفتارهای انسان را تقلید می‌کند و توانایی یادگیری و استفاده از هوش خود را برای حل هر مشکلی دارد. AGI می‌تواند به گونه‌ای فکر کند، بفهمد و عمل کند که از انسان در هر موقعیتی قابل تشخیص نیست.

محققان و دانشمندان هوش مصنوعی هنوز به AGI دست پیدا نکردند. آن‌ها برای موفقیت در این زمینه باید راهی بیابند تا ماشین‌ها را آگاه کرده و مجموعه‌ای کامل از توانایی‌های شناختی را برنامه ریزی کنند. ماشین‌ها باید توانایی استفاده از دانش تجربی را در طیف وسیع‌تری از مسائل مختلف به دست آورند.

“K computer” که توسط شرکت فوجیتسو و موسسه RIKEN ساخته شده یکی از سریع‌ترین ابررایانه‌ها است. K computer بیشترین تلاش برای دستیابی به هوش مصنوعی AGI است اما با توجه به اینکه ۴۰ دقیقه طول کشید تا یک ثانیه فعالیت عصبی شبیه‌سازی شود؛ پس تعیین اینکه آیا هوش مصنوعی قوی خواهد بود یا نه دشوار است.

  • ASI

ابر هوش مصنوعی یا ASI در واقع یک هوش مصنوعی فرضی است که فقط هوش و رفتار انسان را تقلید یا درک نمی‌کند. ASI جایی است که ماشین‌ها خودآگاه می‌شوند و از ظرفیت هوش و توانایی انسان فراتر می‌روند. ابر هوش مدت‌هاست که الهام بخش داستان‌های علمی تخیلی دیستوپیایی بوده است. در داستان‌های او ربات‌ها بشریت را زیر پا می‌گذارند، سرنگون می‌کنند یا به بردگی می‌گیرند.

ASI از نظر تئوری در هر کاری که انجام می‌دهیم از ریاضیات گرفته تا علوم، ورزش، هنر، پزشکی، سرگرمی‌ها، روابط عاطفی و … بهتر است. ASI حافظه بیشتر و توانایی سریع‌تری برای پردازش و تجزیه و تحلیل داده‌ها و محرک‌ها دارد؛ در نتیجه توانایی تصمیم گیری و حل مسئله آن بسیار برتر از انسان‌ها است. پتانسیل داشتن چنین ماشین‌های قدرتمندی ممکن است جذاب به نظر برسد اما این مفهوم پیامدهای ناشناخته زیادی دارد.

آموزش هوش مصنوعی

در حال حاضر دوره‌های آموزشی آنلاین و مؤسسات آموزشی زیادی وجود دارند که به شما کمک می‌کنند تا مفاهیم و تکنیک‌های هوش مصنوعی را یاد بگیرید؛ همچنین کتاب‌ها و منابع آموزشی متعددی در دسترس‌اند که به شما اطلاعات جامع‌تری درباره هوش مصنوعی ارائه می‌دهند. بعضی از منابع آموزشی معروف در حوزه هوش مصنوعی عبارت‌اند از:

  • “Artificial Intelligence: A Modern Approach” نوشته Stuart Russell و Peter Norvig
  • “Deep Learning” نوشته Ian Goodfellow، Yoshua Bengio و Aaron Courville
  • “Pattern Recognition and Machine Learning” نوشته Christopher Bishop
  • “Reinforcement Learning: An Introduction” نوشته Richard S. Sutton و Andrew G. Barto

علاوه بر این موارد سایت‌های آموزشی آنلاینی مانند Coursera، Udemy و edX هم بهترین دوره‌های هوش مصنوعی را برگزار می‌کنند؛ حتی برخی از دانشگاه‌ها هم دوره‌های آموزشی مخصوصی در این زمینه دارند. با توجه به پیچیدگی و گستردگی هوش مصنوعی پیشنهاد می‌کنیم مباحث را از پایه شروع کنید سپس سراغ مفاهیم پیشرفته‌تر بروید.

الگوریتم هوش مصنوعی چیست؟

برای حل یک دسته از مسائل می‌توان از الگوریتم‌های هوش مصنوعی مختلفی استفاده کرد. در بخش زیر انواع مختلف الگوریتم‌ها را با هم بررسی می‌کنیم.

  • Naive Bayes

 این الگوریتم بر اساس «قاعده بیز» است و برای تخمین احتمال وقوع یک رویداد استفاده می‌شود. این الگوریتم به‌عنوان یک طبقه بند احتمالاتی عمل می‌کند و برای طبقه بندی مسائل مانند تشخیص اسپم ایمیل یا تشخیص بیماری‌ها استفاده می‌شود.

  • Decision Tree

در این الگوریتم برای طبقه بندی داده‌ها یک درخت تصمیم‌گیری ساخته می‌شود. در هر گره از درخت، یک شرط بر اساس ویژگی‌های داده‌ها قرار می‌گیرد و با توجه به شرط، داده‌ها به گره‌های فرزند تقسیم می‌شوند. این فرآیند تا رسیدن به گره‌های پایانی ادامه می‌یابد.

  • Random Forest

این الگوریتم بر اساس ترکیب چندین درخت تصمیم‌گیری (decision tree) کار می‌کند. هر درخت در این الگوریتم به‌صورت تصادفی از داده‌ها و ویژگی‌های موجود ساخته می‌شوند؛ سپس نتیجه طبقه بندی با استفاده از رأی گیری اکثریت درخت‌ها تعیین می‌شود.

  • Logistic Regression

این الگوریتم برای مسائل طبقه بندی دودویی (binary classification) استفاده می‌شود. احتمال وقوع یک رویداد در هر دسته با استفاده از تابع لجستیک محاسبه می‌شود سپس بر اساس آن، داده‌ها به دسته‌های مختلف تقسیم می‌شوند.

  • Support Vector Machines (SVM)

این الگوریتم مخصوص طبقه بندی داده‌های خطی و غیرخطی است. SVM با استفاده از یک صفحه (برای داده‌های خطی) یا یک ابر صفحه (برای داده‌های غیرخطی) داده‌ها را به دسته‌های مختلف تقسیم می‌کند.

  • K Nearest Neighbours (KNN)

در این الگوریتم برای پیش بینی برچسب یک نمونه جدید، نزدیک‌ترین همسایگان آن در مجموعه داده‌های آموزشی پیدا می‌شوند و برچسب بیشترین تکرار را به نمونه جدید اختصاص می‌دهند. روش کار الگوریتم KNN به این صورت است که ابتدا فاصله نمونه جدید با همه نمونه‌های آموزشی محاسبه می‌شود؛ سپس K نزدیک‌ترین همسایگان با کم‌ترین فاصله به نمونه جدید انتخاب می‌شوند. در نهایت با توجه به برچسب‌های همسایگان انتخاب شده، برچسب نمونه جدید تعیین می‌شود. عدد K در الگوریتم KNN نشان دهنده تعداد همسایگانی است که در نظر گرفته می‌شوند. انتخاب درست مقدار K برای هر مسئله ممکن است تأثیر زیادی بر دقت الگوریتم داشته باشد.

  • رگرسیون خطی

در الگوریتم رگرسیون خطی رابطه خطی بین ورودی و خروجی پیدا می‌شود. با استفاده از این رابطه، مقدار خروجی برای ورودی‌های جدید پیش‌بینی می‌شود.

  • K-Means Clustering

در K-Means Clustering، داده‌ها به K خوشه تقسیم می‌شوند به‌طوری که داده‌های هر خوشه به یکدیگر نزدیک باشند و از داده‌های خوشه‌های دیگر فاصله داشته باشند.

  • Gradient Boosting

این الگوریتم بر اساس ترکیب چندین مدل ضعیف (weak learner) کار می‌کند. در هر مرحله یک مدل ضعیف به مدل قبلی اضافه می‌شود و با استفاده از تابع هدف (objective function) وزن‌های نمونه‌ها تعیین می‌شود.

  • XGBoost

XGBoost نسخه بهبود یافته‌ای از Gradient Boosting است و با استفاده از روش‌های بهینه سازی و فشرده سازی عملکرد و سرعت آن را بهبود می‌بخشد.

با رشد فعالیت رایانه‌ها، گوشی‌های هوشمند و شبکه‌های اجتماعی کمتر کسب و کاری هنوز به شکلی سنتی به فعالیت خود ادامه می‌دهد. با نگاهی به اطرافمان به تأثیر این مهم در رفتار و سبک زندگی افراد پی خواهیم برد. در دنیای امروز، افراد با زنگ ساعت هوشمند خود از خواب بر می‌خیزند. به تقویم کاری خود که در نرم افزار هوشمند تنظیم شده است مراجعه می‌کنند. در طول مسیر محل کار از شبکه‌های اجتماعی استفاده می‌کنند و تا پایان روز انتخاب‌های بسیاری را بر اساس پیشنهاد پلتفرم‌های مختلف انجام می‌دهند. این همان قدرت انکار نشدنی یک محصول فراگیر است

در واقع می‌توان گفت کاربرد هوش مصنوعی در کسب و کار نقش مهمی در سرعت بخشی و ساده‌سازی کلیه اتفاقات روزمره داشته است. در تجارت نیز به همین شکل می‌باشد، کسب و کارها در حال حاضر از این دستاورد برای موفقیت در سه زمینه اصلی استفاده می‌کنند: 

  • هوشمندسازی محصولات و خدمات
  • هوشمندسازی فرآیندها از طریق تجزیه و تحلیل داده‌ها 
  • تعامل با مشتریان و کارمندان

هوش مصنوعی پدیده‌ای است که در آن یک ماشین با توانایی درک، تحلیل و یادگیری از طریق الگوریتم‌های ویژه، به‌صورت یک برنامه هوشمند عمل می‌کند. برای کسب اطلاعات بیشتر می‌توانید مقاله هوش مصنوعی و رویکردهای آن را مطالعه کنید. ماشین‌های هوش مصنوعی می‌توانند الگوهای رفتاری انسان را به خاطر بسپارند و مطابق با ترجیحات آن‌ها سازگار شوند. برخلاف تصور عمومی، هوش مصنوعی تنها به فناوری اطلاعات یا صنعت فناوری محدود نمی‌شود. این تکنولوژی، در زمینه‌های دیگر مانند پزشکی، کسب و کار، آموزش، قانون و تولید نیز به‌طور گسترده مورد استفاده قرار می‌گیرد.

آمار زیر، وضعیت رشد هوش مصنوعی را نشان می‌دهد:

  • در سال ۲۰۱۴، بیش از ۳۰۰ میلیون دلار در استارتاپ‌های هوش مصنوعی سرمایه گذاری شد که نسبت به سال قبل، ۳۰۰ درصد افزایش داشت (بلومبرگ).
  • تا سال ۲۰۱۸، ۶ میلیارد دستگاه، به‌صورت پیش فرض، درخواست پشتیبانی می‌کنند (گارتنر).
  • تا پایان سال ۲۰۱۸، «دستیارهای دیجیتال مشتری»، مشتریان را از طریق چهره و صدا تشخیص می‌دهند (گارتنر).
  • هوش مصنوعی، تا پایان دهه، جایگزین ۱۶ درصد مشاغل آمریکایی خواهد شد (فارس‌تر).
  • ۱۵ درصد از کاربران تلفن‌های اپل از قابلیت تشخیص صدا Siri استفاده می‌کنند (BGR).

در ادامه چند نمونه از کاربردهای هوش مصنوعی را که در حال حاضر به‌صورت گسترده مورد استفاده قرار می‌گیرند، بررسی می‌کنیم.

  • سیری  (Siri)

سیری، یکی از محبوب‌ترین برنامه‌های دستیار شخصی است که توسط اپل در آیفون و آیپد ارائه می‌شود. این دستیار مجازی، با صدایی دوستانه، به‌صورت روزمره با کاربر ارتباط برقرار می‌کند. سیری در یافتن اطلاعات، پیدا کردن مسیر، ارسال پیام، برقراری تماس صوتی، باز کردن اپلیکیشن‌ها و افزودن رویدادها به تقویم، به کاربر کمک می‌کند

  • تسلا  (Tesla)

تنها تلفن‌های هوشمند نیستند که به سوی هوش مصنوعی سوق پیدا کرده‌اند؛ خودروها نیز در این مسیر گام‌هایی برداشته‌اند. خودرو تسلا، نه تنها توانسته است تحسین‌های زیادی را برانگیزد، بلکه از قابلیت‌هایی مانند رانندگی خودکار، قابلیت پیش‌بینی و نوآوری مطلق تکنولوژی نیز برخوردار است.

  • کاگیتو  (Cogito)

کاگیتو، نرم‌افزاری قدرتمند است که صدای مشتریانی را که برای مثال با واحد پشتیبانی یک شرکت تماس می‌گیرند، تجزیه و تحلیل می‌کند. این نرم‌افزار، براساس نتایج حاصل از بررسی‌ها، به‌صورت همزمان توصیه‌های رفتاری لازم را به کارمندان واحد پشتیبانی ارائه می‌دهد.

کاگیتو، یکی از بهترین نمونه‌های نسخه رفتاری برای بهبود هوش هیجانی کارمندان پشتیبانی است و به آن‌ها کمک می‌کند ارتباط بهتری با مشتریان برقرار کنند. توصیه‌هایی که توسط نرم‌افزار ارائه می‌شود، در نهایت موجب افزایش رضایت‌مندی مشتریان خواهد شد.

  • نتفلیکس  (Netflix)

نتفلیکس، یک سرویس بسیار محبوب در زمینه محتوا بر اساس تقاضا است که با استفاده از تکنولوژی پیش‌بینی، پیشنهادهایی را بر اساس واکنش، علایق، انتخاب‌ها و رفتار کاربران ارائه می‌دهد. این فناوری، با بررسی سوابق پیشین، فیلم‌ها را بر اساس علاقه و واکنش‌های قبلی کاربران پیشنهاد می‌دهد.

  • پاندورا  (Pandora)

پاندورا، یکی از محبوب‌ترین و پرطرفدارترین سرویس‌های پخش موسیقی است که از هوش مصنوعی برای شناسایی علایق کاربران بهره می‌برد. در این سرویس، هر آهنگ بر اساس ۴۰۰ ویژگی موسیقی، به‌صورت جداگانه تجزیه و تحلیل می‌شود. این سیستم، قابلیت بسیار خوبی در پیشنهاد آهنگ‌هایی دارد که علی رغم علاقه مردم به آن‌ها، هرگز مورد توجه واقع نمی‌شوند.

  • نست – گوگل  (Nest, Google)

نست، یکی از موفق‌ترین استارتاپ‌های هوش مصنوعی بود که در سال ۲۰۱۴ توسط گوگل خریداری شد. ترموستات هوشمند نست، برای صرفه‌جویی در مصرف انرژی، از الگوریتم‌های رفتاری براساس رفتار کاربران استفاده می‌کند. در هفته اول، کاربر، تنظیمات ترموستات را انجام می‌دهد تا داده‌های اولیه از رفتار او فراهم شود. پس از آن، نست می‌آموزد که کاربر در چه زمان‌هایی، چه دمایی را ترجیح می‌دهد و تمام سیستم‌ها را برای دستیابی به آن دما مدیریت می‌کند. این سیستم، برای صرفه جویی در مصرف انرژی، در زمان‌هایی که کسی در خانه نیست به‌صورت خودکار خاموش می‌شود. در حقیقت، ترکیبی از هوش مصنوعی و بلوتوث کم انرژی است.

  • باکس‌اور  (Boxever)

باکس‌اور، شرکتی است که با بهره‌گیری از قابلیت یادگیری ماشین، به آژانس‌های مسافرتی کمک می‌کند تا پیشنهادهای سازگارتری با اهداف و سلیقه هر مشتری ارائه دهند. این نرم‌افزار، به برقراری ارتباط موثرتری با مشتریان و بهبود تجربه آن‌ها در صنعت گردشگری کمک می‌کند.

  • پرنده‌های بدون سرنشین  (Flying Drones)

پرنده‌های بدون سرنشین، پیش از این نیز محصولات را به خانه مشتریان می‌رساندند. اگرچه از این ابزار به‌صورت آزمایشی استفاده می‌شد. این پرنده‌ها، از نوعی سیستم یادگیری ماشین قدرتمند برخوردارند که می‌تواند از طریق سنسورها و دوربین‌های فیلم‌برداری، محیط را به مدل‌های سه بعدی تبدیل کند.

الگوریتم‌های تعیین مسیر حرکت، پرنده‌های بدون سرنشین را در مورد چگونگی و مکان حرکت راهنمایی می‌کنند. با استفاده از سیستم Wi-Fi، می‌توان هواپیماهای بدون سرنشین را کنترل کرد و از آن‌ها برای اهداف خاصی مانند تحویل محصول، ساخت فیلم یا گزارش اخبار استفاده کرد.

  • اکو  (Echo)   

اکو، در ابتدا توسط آمازون راه‌اندازی شد و در حال حاضر، به سمت هوشمندتر شدن پیش می‌رود. این محصول، نوعی محصول انقلابی است که در جستجوی اطلاعات، تعیین وقت قرار ملاقات، خرید کردن، چراغ‌های کنترل، ترموستات، پاسخ به سؤالات، خواندن کتاب‌های صوتی، گزارش ترافیک و آب و هوا، ارائه اطلاعات در مورد کسب و کارهای محلی و موارد دیگر با استفاده از سرویس صدای الکسا. به کاربر کمک می‌کند.

  • آمازون

آمازون، یکی از شرکت‌های پیشرو در زمینه استفاده از هوش مصنوعی است. این شرکت، سرمایه‌گذاری زیادی در این حوزه انجام داده است. کمپانی آمازون، با استفاده از تکنولوژی هوش مصنوعی، کالاهای مورد علاقه مشتریان را شناسایی کرده و به آن‌ها معرفی می‌کند. این کار به افزایش فروش محصولات آمازون کمک زیادی می‌کند.

کاربرد هوش مصنوعی در کسب و کار و ایده‌های به‌کارگیری آن برای پیشرفت و توسعه، یکی از دغدغه‌های اصلی مدیران سازمان‌ها می‌باشد. به‌عنوان شاخه‌ای از علوم رایانه‌ای، استفاده از هوش مصنوعی در حوزه‌های گوناگون رواج بسیاری پیدا کرده است. در جهان تجاری امروز کمتر کسی را می‌توان یافت که برای کوچکترین امور خود به نوعی از این فناوری کمک نگیرد. به همان اندازه که این علم در سبک زندگی اکثر انسان‌ها جای گرفته است، کسب و کارهای بسیاری را نیز تحت تأثیر خود قرار داده و موجب رشد و موفقیت آنان شده است.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *